Header logo is


2020


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

Preprint_PDF DOI [BibTex]

2020

Preprint_PDF DOI [BibTex]


Differentiation of Blackbox Combinatorial Solvers
Differentiation of Blackbox Combinatorial Solvers

Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolı́nek, M.

In International Conference on Learning Representations, ICLR’20, 2020 (incollection)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2017


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

link (url) DOI [BibTex]

2017

link (url) DOI [BibTex]


no image
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G.

Arxiv (article)

Abstract
Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups

Arxiv [BibTex]