Header logo is


2020


no image
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups.

Code Arxiv [BibTex]

2020

Code Arxiv [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

Project Page PDF [BibTex]

Project Page PDF [BibTex]


no image
Sample-efficient Cross-Entropy Method for Real-time Planning

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M., Martius, G.

In Conference on Robot Learning 2020, 2020 (inproceedings)

Abstract
Trajectory optimizers for model-based reinforcement learning, such as the Cross-Entropy Method (CEM), can yield compelling results even in high-dimensional control tasks and sparse-reward environments. However, their sampling inefficiency prevents them from being used for real-time planning and control. We propose an improved version of the CEM algorithm for fast planning, with novel additions including temporally-correlated actions and memory, requiring 2.7-22x less samples and yielding a performance increase of 1.2-10x in high-dimensional control problems.

Paper Code [BibTex]

Paper Code [BibTex]


Optimizing Rank-based Metrics with Blackbox Differentiation
Optimizing Rank-based Metrics with Blackbox Differentiation

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 7620-7630, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020, Best paper nomination (inproceedings)

Abstract
Rank-based metrics are some of the most widely used criteria for performance evaluation of computer vision models. Despite years of effort, direct optimization for these metrics remains a challenge due to their non-differentiable and non-decomposable nature. We present an efficient, theoretically sound, and general method for differentiating rank-based metrics with mini-batch gradient descent. In addition, we address optimization instability and sparsity of the supervision signal that both arise from using rank-based metrics as optimization targets. Resulting losses based on recall and Average Precision are applied to image retrieval and object detection tasks. We obtain performance that is competitive with state-of-the-art on standard image retrieval datasets and consistently improve performance of near state-of-the-art object detectors.

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]

2012


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

link (url) [BibTex]

2008


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

DOI [BibTex]

2008

DOI [BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

DOI [BibTex]

DOI [BibTex]