Header logo is


2020


no image
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups.

Code Arxiv [BibTex]

2020

Code Arxiv [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Optimizing Rank-based Metrics with Blackbox Differentiation
Optimizing Rank-based Metrics with Blackbox Differentiation

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 7620-7630, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020, Best paper nomination (inproceedings)

Abstract
Rank-based metrics are some of the most widely used criteria for performance evaluation of computer vision models. Despite years of effort, direct optimization for these metrics remains a challenge due to their non-differentiable and non-decomposable nature. We present an efficient, theoretically sound, and general method for differentiating rank-based metrics with mini-batch gradient descent. In addition, we address optimization instability and sparsity of the supervision signal that both arise from using rank-based metrics as optimization targets. Resulting losses based on recall and Average Precision are applied to image retrieval and object detection tasks. We obtain performance that is competitive with state-of-the-art on standard image retrieval datasets and consistently improve performance of near state-of-the-art object detectors.

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]

Paper @ CVPR Long Oral Short Oral Arxiv Code Pdf Project Page [BibTex]

2008


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

DOI [BibTex]

2008

DOI [BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

DOI [BibTex]

DOI [BibTex]

2005


no image
Learning to Feel the Physics of a Body

Der, R., Hesse, F., Martius, G.

In Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 , 2, pages: 252-257, Washington, DC, USA, 2005 (inproceedings)

Abstract
Despite the tremendous progress in robotic hardware and in both sensorial and computing efficiencies the performance of contemporary autonomous robots is still far below that of simple animals. This has triggered an intensive search for alternative approaches to the control of robots. The present paper exemplifies a general approach to the self-organization of behavior which has been developed and tested in various examples in recent years. We apply this approach to an underactuated snake like artifact with a complex physical behavior which is not known to the controller. Due to the weak forces available, the controller so to say has to develop a kind of feeling for the body which is seen to emerge from our approach in a natural way with meandering and rotational collective modes being observed in computer simulation experiments.

[BibTex]

2005

[BibTex]