Header logo is


2019


no image
Assessing Aesthetics of Generated Abstract Images Using Correlation Structure

Khajehabdollahi, S., Martius, G., Levina, A.

In Proceedings 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages: 306-313, IEEE, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), December 2019 (inproceedings)

DOI [BibTex]

2019

DOI [BibTex]


no image
Variational Autoencoders Pursue PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In Proceedings International Conference on Hybrid Systems: Computation and Control (HSCC ’19), pages: 1-10, ACM, International Conference on Hybrid Systems: Computation and Control (HSCC '19), April 2019 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Control What You Can: Intrinsically Motivated Task-Planning Agent

Blaes, S., Vlastelica, M., Zhu, J., Martius, G.

In Advances in Neural Information Processing (NeurIPS’19), pages: 12520-12531, Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)

Abstract
We present a novel intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress. It learns what can be controlled, how to allocate time and attention, and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity. In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2016


no image
Dynamical self-consistency leads to behavioral development and emergent social interactions in robots.

Der, R., Martius, G.

In Proc. IEEE Int. Conf. on Development and Learning and Epigenetic Robotics, pages: 49-56, IEEE, September 2016, in press (inproceedings)

DOI [BibTex]

2016

DOI [BibTex]


no image
Compliant control for soft robots: emergent behavior of a tendon driven anthropomorphic arm.

Martius, G., Hostettler, R., Knoll, A., Der, R.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 767-773, 2016 (inproceedings)

DOI [BibTex]

DOI [BibTex]

2010


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

link (url) DOI [BibTex]

2010

link (url) DOI [BibTex]

2007


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

[BibTex]

2007

[BibTex]

2006


no image
Let It Roll – Emerging Sensorimotor Coordination in a Spherical Robot

Der, R., Martius, G., Hesse, F.

In Proc, Artificial Life X, pages: 192-198, Intl. Society for Artificial Life, MIT Press, August 2006 (inproceedings)

[BibTex]

2006

[BibTex]


no image
From Motor Babbling to Purposive Actions: Emerging Self-exploration in a Dynamical Systems Approach to Early Robot Development

Der, R., Martius, G.

In Proc. From Animals to Animats 9, SAB 2006, 4095, pages: 406-421, LNCS, Springer, 2006 (inproceedings)

Abstract
Self-organization and the phenomenon of emergence play an essential role in living systems and form a challenge to artificial life systems. This is not only because systems become more lifelike, but also since self-organization may help in reducing the design efforts in creating complex behavior systems. The present paper studies self-exploration based on a general approach to the self-organization of behavior, which has been developed and tested in various examples in recent years. This is a step towards autonomous early robot development. We consider agents under the close sensorimotor coupling paradigm with a certain cognitive ability realized by an internal forward model. Starting from tabula rasa initial conditions we overcome the bootstrapping problem and show emerging self-exploration. Apart from that, we analyze the effect of limited actions, which lead to deprivation of the world model. We show that our paradigm explicitly avoids this by producing purposive actions in a natural way. Examples are given using a simulated simple wheeled robot and a spherical robot driven by shifting internal masses.

[BibTex]

[BibTex]