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ABSTRACT
Equation learning is a deep learning framework for explainable

machine learning in regression settings, with applications in engi-

neering and the natural sciences. Equation learners typically do not

capture uncertainty about the model or its predictions, although

uncertainty is often highly structured and particularly relevant

for these kinds of applications. We show how simple, yet effective

forms of Bayesian deep learning can be used to build structure and

explainable uncertainty over a set of found equations. Specifically,

we use a mixture of Laplace approximations, where each mixture

component captures a different equation structure, and the local

Laplace approximations capture parametric uncertainty within one

family of equations. We present results on both synthetic and real

world examples.
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1 INTRODUCTION
Equations are key elements in natural sciences to describe phenom-

ena and their underlying principles. Similarly, they are important

in the engineering domain, e.g., in model-predictive control [8]. In

industrial applications, e.g., for embedded controller, models have

to be minimal in computational power and memory demand due

to embedded hardware and latency constraints. Model predictions

given by equations can meet those requirements. Equation learning

is a topic of growing interest in machine learning [11, 26, 29, 31].

In active learning, safe reinforcement learning and extrapolation

tasks as well as safety critical systems like health care or automated
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driving, it is crucial to know about the uncertainty of the model. But,

equation learners do not capture uncertainty about the model out-

put. An equation learner discovers a set of plausible equations with

different structure and varying complexity. Those equations corre-

spond to different minima in the loss landscape. Their differences

in structure can lead to a rich variety of predictions. Motivated by

Occam’s Razor [22] to prefer simple solutions, conventional equa-

tion learners select one equation, ignoring all others. However, if

the dataset is ambiguous then there exist several similarly plausible

candidate equations. Selecting one equation out of the others by

chance means a loss of information about the data. This leads to

overconfidence in favor of the selected equation. State-of-the-art in

uncertainty quantification in deep learning are ensemble methods

[6, 10, 16, 23, 28], especially to capture global uncertainty about the

models predictions. So the question arises whether we can use the

found equations by an equation learner to construct an ensemble

of equations for uncertainty quantification in equation learning.

Due to their differences in structure, the predictions of the equa-

tions strongly differ in regions that are not sufficiently covered by

measurements. This is of special interest in extrapolation tasks,

where no train data is available. Indeed, incorporating equations

of different complexity and structure leads to sophisticated, struc-

tured uncertainty estimates. We apply a Laplace approximation

to each equation in order to capture local uncertainty about the

parameters within each equation structure. Great success has re-

cently been shown for uncertainty quantification in deep learning

[3, 7, 9, 13, 14, 30].

We show how simple, yet effective forms of Bayesian deep learn-

ing can be used to build such structured (explainable) uncertainty

over a set of found equations. Specifically, we use a mixture of

Laplace approximations, where each mixture component captures a

different equation structure, and the local Laplace approximations

capture parametric uncertainty within one family of equations.

The paper is structured as follows: First, we outline background

information about Gaussian regression and equation learning in

section 2. In section 3 we introduce our method to capture uncer-

tainty in equation learning. In section 4, we present applications

of our method to two artificial, ambiguous datasets as well as two

real-world datasets. In section 5 we discuss relations to other work

and conclude in section 6.
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Table 1: Hand-picked equations of different complexity for toy example E1 and E2 with root mean squared error (rmse) and
mixture coefficients 𝜋𝑘 on the train dataset. Their local Laplace approximations are shown in the middle panel of figure 1.

dataset 𝜋𝑘 rmse complexity equation

E1

0.095 0.0098 2 𝑦0 = 0.79 − 0.34 (1.05𝑥1 + 0.03)2
0.063 0.0088 2 𝑦0 = 0.56 − 0.24 cos (2.02𝑥1 + 3.16)
0.041 0.0043 4 𝑦0 = −0.45 (−0.98𝑥1 − 0.04)2 + 0.02 cos (3.92𝑥1 − 2.2) + 0.81

0.012 0.00021 8

𝑦0 = −0.15 (0.85𝑥1 − 0.04)2 − 0.02 cos (2.54𝑥1 + 3.08)
−0.04 cos (2.62𝑥1 − 3.2) − 0.07 cos

(
7.78 (0.85𝑥1 − 0.04)2 − 3.64

)
+ 0.67

E2

0.057 0.0088 3 𝑦0 = 0.44 − 0.7

(
0.3 − 1.24 (1.88𝑥1 + 0.06)2

)
2

0.051 0.0084 3 𝑦0 = 0.45 − 0.45 (0.5 − 0.98 cos (4.03𝑥1 + 0.13))2
0.049 0.038 2 𝑦0 = 0.43 − 0.52 (−1.15𝑥1 − 0.05)2
0.014 7.8e-06 4 𝑦0 = 0.82 − 0.6 (−0.01𝑥1 + 1.16 cos (7.54𝑥1 + 0.26) + 0.2)2

2 BACKGROUND
2.1 Gaussian regression
In this work, we consider Gaussian regression with a parameterized

analytical equation 𝑓𝜽 , to map a 𝑑-dimensional input 𝒙 to a 𝑑 ′-
dimensional output 𝒚 with posterior distribution

𝑝(𝜽 | D)∝𝑝(D | 𝑓𝜽 )𝑝(𝜽 )=
𝑁∏
𝑖=1

N (𝒚𝑖 | 𝑓𝜽 (𝒙𝑖 ),𝜎2)N (𝜽 | 0,𝜆−1𝐼 ) (1)

with a Gaussian zero-mean isotropic prior 𝑝(𝜽 ) on the parameters

𝜽 of the equation, which corresponds to 𝐿2 regularization on the

parameters with a scalar precision hyperparameter 𝜆. The dataset

(𝒙𝑖 ,𝒚𝑖 ) ∈ D is assumed to be sampled iid., and it contains 𝑁 data

points each of which has Gaussian noise with variance 𝜎2. The

empirical risk for an equation with𝑀 parameters is given by the

negative log-posterior

𝐿(D, 𝑓
˜𝜽 ) =

𝜆

2

𝑀∑
𝑖=1

˜𝜃2𝑖 +
𝑀

2

log (2𝜋𝜆−1) +
𝑁∑
𝑖=1

(𝒚𝑖 − 𝑓 ˜𝜽 (𝒙𝑖 ))
2

2𝜎2
(2)

+

𝑁

2

log(2𝜋𝜎2).

We assume an equation learner infers the structure of 𝑓𝜽 as well as

its parameters from data.

2.2 Equation learning
Learning simple and accurate equations for a given dataset is known

as equation learning or symbolic regression. The found equations

are explainable and describe the relations between the quantities

of interest. They are compositions of mathematical building blocks

like analytic functions {sin, sqrt, log, . . . }, mathematical operators

like {+,−, ∗, /, ◦, . . . } and constants. Our framework to capture un-

certainty in equation learning can be applied to any set of equations

found by an equation learning algorithm.

3 THEORY
We capture the parametric uncertainty within one equation with

a local Laplace approximation and refer to it as local uncertainty.
Yet, an equation learner finds several plausible equations of vary-

ing structure and complexity. They correspond to different modes

of the likelihood. Due to their differences in structure their pre-

diction strongly deviates from each other in regions that are not

sufficiently covered by measurement data. This applies especially

to extrapolation tasks to unseen domains. We describe this variety

in predictions as global uncertainty that we capture with a mixture

of local Laplace approximations (MoLA, Eschenhagen et al. [6]).

3.1 Linearized Laplace approximation for
equations

The Laplace approximation can be applied post-hoc to pre-trained

models, e.g., to learned equations 𝑓 . It approximates a distribution

at its mode by matching a multivariate Gaussian to that mode with

a covariance given by the inverse of the curvature at the mode.

Here, it approximates the posterior 𝑝(𝜽 | D) at its mode
˜𝜽 by a

multivariate Gaussian [22]

𝑝(𝜽 | D) ≈ N (𝜽 | ˜𝜽 ,𝑨−1
) (3)

with the inverse curvature of the negative log-posterior

𝑨 = −∇∇⊺ ln(𝑝(D | 𝜽 )) |
˜𝜽 −∇∇⊺ ln(𝑝(𝜽 ) |)

˜𝜽 . (4)

The first term is the Hessian of the negative log-likelihood 𝑯 . The

second term corresponds to the prior. The predictive distribution

of 𝑓 ∗𝜽 at any test point 𝒙∗ is given by integration over the weights

𝑝(𝒚∗ |𝒙∗,D) =

∫
𝑝(𝒚∗ | 𝑓𝜽 (𝒙∗))𝑝(𝜽 | D)d𝜽 . (5)

The integration is typically intractable. It can be approximated

either by Monte-Carlo integration from parameter distribution

𝑝(𝜽 | D) or with a linearization at its mode
˜𝜽

𝑓𝜽 (𝒙
∗
) ≈ 𝑓

˜𝜽 (𝒙
∗
) + 𝑱 ∗⊺(𝜽 − ˜𝜽 ) (6)

with Jacobian 𝑱 ∗ = ∇𝜽 𝑓𝜽 (𝒙
∗
)|
˜𝜽 . This leads to a tractable predictive

Gaussian distribution whose mean is given by the found equation

𝑓
˜𝜽 with parameters set to its mode

˜𝜽

𝑝(𝒚∗ | 𝒙∗,D) ≈ N (𝒚∗ | 𝑓
˜𝜽 (𝒙

∗
),Σ∗) , Σ∗ = 𝑱 ∗⊺𝑨−1 𝑱 ∗ + 𝜎2𝑰 . (7)

The first term in the covariance Σ depends on 𝒙 and describes

the uncertainty of a certain equation structure due to uncertainty

of the parameters 𝜽 . The second term is given by measurement

uncertainty.
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3.2 Mixture of Laplace approximations
We capture the global uncertainty of 𝐾 equations with a mixture

of Laplace approximations (MoLA)

𝑝(𝒚∗ | 𝒙∗,D) =

𝐾∑
𝑘=1

𝜋𝑘N (𝒚∗ |𝑓 𝑘
˜𝜽
(𝒙∗)),Σ∗

𝑘
) (8)

The mixture coefficients are chosen such that they reflect how

plausible each equation is w.r.t. to the data. This should be related

to accuracy and complexity of the equation. From a Bayesian view,

the natural choice is the marginal likelihood since it inherits a

regularization for complexity and accuracy

𝑝(D | 𝑓 𝑘 ) =
∫
𝑝(D | 𝑓 𝑘𝜽 )𝑝(𝜽 ) d𝜽 ≈ e

−𝐿(D,𝑓 𝑘
˜𝜽
)

√
(2𝜋 )𝑀𝑘

det𝑨
(9)

with the empirical risk 𝐿 (see equation 2) given by the negative

log-posterior and the determinant of the curvature matrix 𝑨. Small

Eigenvalues of 𝑨 increase the marginal likelihood. They indicate

directions in weight space that are not identified by data and thus

represent flexibility of the equation in parameter space. The mar-

ginal likelihood can be decomposed in two contributions, the empir-

ical loss favors accurate, yet simple equations and the determinant

of the curvature favors flexible equations in parameter space. The

marginal likelihood is relevant in Bayesian model selection. It is

a measure to compare different models to each other. Typically,

hyperparameters are optimized w.r.t. to the marginal likelihood.

Therefore, we choose the mixture coefficients 𝜋𝑘 to be proportional

to the corresponding normalized marginal likelihood

𝜋𝑘 =

(
𝑝(D | 𝑓 𝑘 )

)1/𝑁
/𝑍 , 𝑍 =

𝐾∑
𝑘=1

(
𝑝(D | 𝑓 𝑘 )

)1/𝑁
(10)

In contrast to classic equation learning, which chooses one specific

equation, our multi-modal mixture model captures several plausible

equations and their local parametric uncertainty. For fast evalu-

ation we approximate the predictive distribution of the mixture

of Laplace approximations with its first two moments similar to

Lakshminarayanan et al. [16]

𝒎∗
=

𝐾∑
𝑘=0

𝜋𝑘 𝑓
𝑘
˜𝜽
(𝒙∗) (11)

diagΣ∗ =
𝐾∑
𝑘=0

𝜋𝑘 (diagΣ
∗
𝑘
+𝒚∗2

𝑘
) −𝒎∗2 . (12)

This leads to the following Gaussian distribution

𝑝(𝒚∗ | 𝒙∗,D) = N (𝒚∗ | 𝒎∗, diagΣ∗). (13)

We want to stress that the computational overhead is still small

compared to neural networks, since just one forward pass and

one backward pass of each equation is required to calculate the

approximation. A visualization is shown in right panel of figure 4.

Remarks: The conditional mean of multi modal distributions

can give a poor representation of the data. Especially, in extrapo-

lation regions where the predictions of the underlying equation

components strongly deviate. Depending on the application the con-

ditional mode may be more meaningful. It would require numerical

iteration since it has no analytic solution.

Our mixture of Laplace approximations strongly depends on the

set of found equations by an equation learner. It inherits a bias

towards structures of equations that occur more frequently. This

might be wanted in the sense that the equation learner introduces

a bias upon the structure of found equations.

4 EXPERIMENTS
In this section, we investigate the predictive distribution of the

MoLA with its local Laplace approximations. We highlight the

importance of considering several plausible equations instead of one

equation on the basis of two ambiguous toy datasets in section 4.1.

In section 4.2 we study two real world time series, which have been

investigated in the course of structured uncertainty estimates by

the automatic statistician [20].

Training: Wenormalize input and output of the real world datasets

for training. We use the equation learner iEQL of Werner et al. [36]

to retrieve plausible functions, which describe the datasets. More

technical details are given in appendix A.1.

We refer to complexity in the framework of the iEQL. It measures

the complexity of an equation by counting all active weights that

are necessary to represent the equation.

Hyperparameters: We follow common practice to optimize the

precision 𝜆 by maximizing the marginal likelihood. Therefore, we

apply a grid search with 𝜆 = 10
𝑘
where 𝑘 is in the range from −2

to 2 with 100 equally spaced steps. The scale of the likelihood 𝜎2

is a model of measurement error. In technical applications, this

parameter is usually known as part of the calibration of the mea-

surement process and should then not be estimated. In situations

where it is not known it can be estimated post-hoc empirically as

𝜎2 =
∑𝑁
𝑖
(𝑓𝜽 (𝒙𝑖 ) −𝒚𝑖 )2/𝑁 , with the usual risk of model-overfitting.

Remarks: During our experiments we discovered that for deep

neural networks and also for the considered equations theHessian is

not guaranteed to be positive-semi-definite (psd.) after convergence

of the optimizer. This might be due to the use of the Adam[12] op-

timizer, which can converge to a saddle point with some directions

with negative curvatures. Therefore, we approximate the Hessian

with the generalized Gauss-Newton (ggn) matrix with backpack

for pytorch [2], which is positive-semi-definite by construction.

The use of a ggn approximated Hessian is motivated by the find-

ings of Immer et al. [9], since we are using a linearized Laplace

approximation.

4.1 Illustrative toy examples
In order to highlight the importance of considering several plausible

equations instead of one single equation as in conventional equation

learning, we construct two ambiguous datasets in which , without

further knowledge, polynomial and periodic equations are similarly

plausible. Selecting one equation out of the others by chance means

a loss of information about the data. The ground truth functions are

chosen such, that they resemble a second order polynomial despite

having a cos structure with different measurement noise

𝑦 = 0.8 cos𝑥 + 𝜖 , 𝜖 ∼ N (0, 0.012) (E1)

𝑦 = 0.8 cos𝑥 − 0.4 + 𝜖 , 𝜖 ∼ N (0, 0.032) . (E2)

For each dataset 6 𝑥 values were uniformly sampled from [−1, 1].
We calculated 31 plausible equations for each dataset with different
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Figure 1: Mixture of Laplace approximations for the illustrative toy examples E1 and E2 in row 1 and 2 respectively. The
left panel shows the predictive distribution given by equation 10. The panel in the middle shows individual local Laplace
approximations with 2𝜎 standard deviation indicated by the shaded area. The color scheme is chosen such that it is aligned
with the pareto plot on the right side. It shows root mean squared error over the complexity of each equation. The color
indicates the weighting of the mixture coefficients given by its normalized marginal likelihood. Yellow indicates low weight,
and red indicates high weight.
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(a) Mauna dataset
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(b) Airline dataset

Figure 2: Local Laplace approximations with 2𝜎 standard deviation indicated by the shaded area for the Mauna and Airline
dataset. The color scheme is chosen such that it is aligned with the pareto plot. It shows root mean squared error (rmse) on
the train dataset over the complexity of each equation. The color indicates the weighting of the mixture coefficients. Yellow
indicates low weight, and red indicates high weight.

complexities with the iEQL. The right panel of figure 1 shows the

pareto plot. The iEQL found equations with complexities in the

range of [0, 8] for both toy examples. Their color indicates the

weighting by the mixture coefficients 𝜋𝑘 . Yellow indicates a small

weighting and red indicates a strong weighting. The left panel

shows the density distribution of the MoLA for all found equations

and the middle panel shows the local Laplace approximation for

four hand-picked equations. Their analytic expressions are listed in

table 1 along with their mixture coefficients 𝜋𝑘 , root mean square

error (rmse) and complexity.

The first two equations of toy example E1 are the two dominant

modes given by a cos and a parabola equation. They can be clearly

identified in the density distribution in the left panel of figure 1.

The two other equations are more accurate, but also more complex.

Their weighting coefficient is smaller and thus they are hard to
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Figure 3: Ambiguous datasets given by equation E1 (left) and
equation E2 (right)

identify in the density plot, but their local Laplace approximation

is shown in the middle panel.

The first three equations of toy example E2 are the most domi-

nant modes given by a fourth order polynomial, a squared cos and a

parabola equation in descending order. The last hand-picked equa-

tion is orders of magnitude more accurate yet its mixture coefficient

is 4 times smaller compared to the dominant modes. This can be

related to larger Eigenvalues of its curvature matrix, meaning less

flexibility in parameter space. Its local Laplace approximation is the

yellow, high frequency line shown in the middle panel of figure 1.

4.2 Real world time series
In the following section, we investigate two real world time series

datasets
1
, which have been studied in the course of structured

uncertainty estimates by the automatic statistician [5, 20, 34]. We

present similar structured uncertainty estimates and provide ex-

plainable, analytic expressions instead of nonparametric Gaussian

processes for

Mauna Loa atmospheric𝐶𝑂2 concentration (Mauna) recorded

at the Mauna Loa observatory

Airline passenger data (Airline) of monthly totals of interna-

tional airline passengers.

We focus on extrapolation to examine our method’s ability to dis-

cover the underlying structured uncertainty. We calculated 51 plau-

sible equations for each dataset with the iEQL. The found equations

can capture the underlying structure of the two datasets. The com-

plexity of the found equations lie within [1 − 235] parameters. The

mixture coefficients reliably prefer accurate and simple equations

as shown in the pareto plots in figure 2. Figure 4 shows the predic-

tive distribution of the MoLa in the left panel and the middle panel

shows a cutout area. The predictive distribution clearly indicates

that the predictions of the equations diverge in the extrapolation

area, as expected. The right panel shows the approximation of the

predictive distribution for fast prediction. It captures the under-

lying structure of the dataset and provides calibrated uncertainty

estimates. This is in contrast to the local Laplace approximations,

which are known to underestimate the uncertainty as shown in

figure 2 for three hand-picked equations for the Mauna dataset

and two hand-picked equations for the Airline dataset. Their corre-

sponding mathematical expressions are shown in table 2. We found

that our method estimates the correct dominating frequency in all

selected equations. In the Mauna dataset the predictions deviate

1
The datasets are downloaded from https://github.com/ssydasheng/Neural-Kernel-

Network

in the extrapolation region due to their differences in structure,

which is an important motivation to capture global uncertainty
with a mixture model. Especially, the second equation models the

growth of the data with an exponentially growing contribution e
𝑎𝑥1

,

whereas the first equation uses a fourth order polynomial and the

third equation uses a parabola. In the Airline dataset the structure

of the second equation is very simple and does not capture higher

frequencies. This leads to a larger uncertainty of its local Laplace

approximation.

In this section, we showed that our method captures the under-

lying structure of the datasets and provides structured uncertainty

estimates. The individual local Laplace approximations underesti-

mate the global uncertainty. Our approximation for fast prediction

provides reliable structured uncertainty, yet this has to be applied

with caution since the conditional mean of a multimodal distribu-

tion can lead to a poor representation of the data.

5 RELATEDWORK
Equation learning. is a topic of growing interest in machine learn-

ing. Zaremba et al. [38] present a tree search guided search with

n-gram model or recurrent neural networks [15] used Bayesian

optimization to search for equations in latent space with a prior

on mathematical constraints. Lample and Charton [17] use seq2seq

transformers to solve mathematical integration and ODEs. Inspired

by physics, Udrescu and Tegmark [35] exploit symmetries and sep-

arability in the dataset to enhance the search for equations. More

recent publications use gradient information about the learned

expression during training. This was first addressed in a reinforce-

ment learning formulation by Petersen [29] via a risk-seeking policy

gradients. A different, yet powerful method are equation learning

(EQL) neural networks [26, 31, 36]. They represent a complex equa-

tion within their architecture, with different kinds of activation

functions (e.g. (cos, sin, log, e, ∗, /, . . . )) in each hidden layer. During

training irrelevant parts are omitted and it converges to a sparse

representation that is the wanted equation itself. Kim et al. [11] in-

tegrated it within other deep learning frameworks. Long et al. [21]

applied it to differential equations. Lin et al. [19] used it to obtain

analytical expressions of classical free energy functionals. Symbolic

regression is commonly addressed with genetic programming and

evolutionary algorithms [18, 27, 33]. It has been applied to automate

the discovery of natural laws [4, 32]. All those methods provide

several plausible equations of different complexity. A suitable equa-

tion is then chosen by a predefined selection criteria or by the user

itself. We propose to combine the set of plausible equations to be

consent about the equations local and global uncertainty.

Automatic statistician: Structured and explainable uncertainty

has been studied with Gaussian processes in the context of kernel

learning [5, 20, 34, 37]. Especially, the automatic statistician aims to

learn an explainable structure of base kernels to describe high-level

properties like smoothness, trends, periodicity and change points.

Learning such structural forms of the kernel also enables for long-

range extrapolation. We achieve similar statistical descriptions, yet

with explainable equations instead of nonparametric, black box

Gaussian processes.
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Figure 4: Mixture of Laplace approximations for the Mauna and Airline dataset in the first and second row respectively. The
left panel shows the predictive distribution given by equation 10. The panel in the middle shows a cutout of the predictive
distribution. The panel on the right shows the approximation of the predictive distribution of the MoLA given by equation 13.
The shaded area indicates 2𝜎 standard deviation.

Table 2: Hand-picked equations for real world datasets Mauna and Airline with root mean squared error (rmse) and mixture
coefficients 𝜋𝑘 on the train dataset. Their local Laplace approximations are shown in the middle panel of figure 4.

dataset 𝜋𝑘 rmse equation

Mauna

0.029 0.4

𝑦0 = 0.89𝑥1 + 0.42 (0.52𝑥1 + 0.22)2 − 0.15 cos (82.73𝑥1 − 3.49)
+0.23

(
−0.35𝑥1 + 0.85 (−0.27𝑥1 + 0.66 cos (3.39𝑥1 + 5.09) − 0.28)2 − 0.49

)
2

−0.1𝑒0.41 cos (165.39𝑥1−5.67) − 0.07

0.024 0.51

𝑦0 = 0.8𝑥1 − 0.36 (0.32 − 0.49 cos (82.69𝑥1 + 0.31))2 + 0.09 cos (82.8𝑥1 − 1.18)
+0.01𝑒2.42𝑥1 − 0.43𝑒−1.9(−0.56𝑥1−0.43)

2

+ 0.28

0.017 0.73

𝑦0 = 0.83𝑥1 + 0.66 (−0.41𝑥1 − 0.29)2 + 0.29 (0.69 cos (82.73𝑥1 − 14.03) + 0.08)2
+0.13𝑒−0.99 cos (82.71𝑥1+2.99) − 0.4

Airline

0.039 8.7

𝑦0 = 0.41𝑥1 (0.23𝑥1 + 0.28) + 0.61𝑥1
+0.4 (0.86 (−0.47 cos (65.09𝑥1 − 1.95) − 0.52) (0.77 cos (65.09𝑥1 − 1.95) + 0.09)
+0.98) · (1.53 cos (21.78𝑥1 − 0.58) + 0.74 cos (22.06𝑥1 + 3.28) + 0.04)
+0.21𝑒0.38𝑥1−1.92 cos (21.78𝑥1−0.58) + 0.18𝑒−2.6(1.02−1.92𝑥1)

2 − 0.63

0.027 18 𝑦0 = 0.75𝑥1 + 0.1𝑒0.64𝑥1−2.0 cos (21.75𝑥1−6.67) − 0.28

Uncertainty estimation for equations: Recent insights in uncer-

tainty estimation with Laplace approximations for neural networks

can also be applied to uncertainty estimation for equations, without

the disadvantage of huge parameter spaces. The Laplace approxima-

tion for neural networks has been first introduced by MacKay [22].

It requires to invert the full Hessian, which is huge for modern neu-

ral networks. With recent developments in Hessian approximation

[1, 24, 25] the Laplace approximation became accessible to mod-

ern neural networks [3, 14, 30]. Foong et al. [7] empirically show

that the linearized Laplace approximation leads to better calibrated
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uncertainty estimates of simple neural networks than without lin-

earization. We experienced similar effects with equations instead

of neural networks. Immer et al. [9] propose to apply the Laplace

approximation to the local linearization of the neural network jus-

tifying the ggn approximation. But, the Laplace approximation is

prone to underestimate the uncertainty.

Lakshminarayanan et al. [16] present a simple, yet state-of-the-

art, method for uncertainty estimation in deep learning combining

several independently trained neural networks in a deep ensemble.

Motivated by their results we propose to use a mixture of Laplace

approximations (MoLA,Eschenhagen et al. [6]) for a set of plausible

equations.

6 CONCLUSION
We introduced uncertainty in equation learning for any set of plau-

sible equations found with an equation learner. We identified two

components of uncertainty: global uncertainty given by the dif-

ferences in structure of each equation and local uncertainty given

by parametric uncertainty within one family of equations. We in-

troduced a mixture of Laplace approximations to capture global
uncertainty of several plausible equations. Each mixture component

captures a different equation structure and the Laplace approxi-

mations capture local, parametric uncertainty within one family

of equations. For computationally fast prediction we proposed to

match the first two moments of the mixture of Laplace approxima-

tions.
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A APPENDIX
A.1 iEQL Training
All experiments are performed using an iEQL architecture [36]

with three hidden layers for the real world datasets and two hidden

layers for the toy datasets. Each hidden layer has {cos, exp , 𝑥2, ∗}
as atomic units. Each atomic unit is applied four times in each layer.

To account for the high frequency in the real world dataset we use

ten cos(𝑓 𝑥) units with frequency 𝑓 = 80 instead of four cos units

in each hidden layer. This mainly affects the initialization of the

iEQL leading to a larger spectrum of frequencies due to the random

initialization of the weight matrices. We prohibit combinations of

cos(cos), exp(exp).

We do not provide any domain expert knowledge and choose

the domain specific complexity factors uniformly. For the given

datasets, penalty epochs are not necessary. We use the proposed

optimizer setting with Adam and a learning rate 𝛼 = 0.001 without

mini batches because of the high frequency of the data. The toy ex-

amples are trained for 𝑇1 = 60000 iterations without regularization

and for 𝑇2 = 100000 iteration with regularization. The real world

dataset are trained for𝑇1 = 200000 iterations without regularization

and for 𝑇2 = 600000 iteration with regularization.

After convergence, we fine-tune the found equation with 40

steps with an lbfgs optimizer with 𝛼 = 1 and a strong wolfe line
searchi, since Adam is not guaranteed to converge.

In order to capture plausible equations of different complex-

ity and accuracy, we train the iEQL with different regularization

strengths 𝜆 = 10
𝑘
where 𝑘 is in the range from −3.0 to 0.0 with 31

equally spaced steps for the toy examples and the range from −5 to
0.0 with 51 equally spaced steps for the real world datasets.

Each training for a single regularization strength was executed

on a single CPU. A training lasts 9096±2295 s for the Airline dataset,
11406±1301 s for the Mauna dataset, 1578±288 s for the toy dataset

E1 and 1645 ± 180 s for the toy dataset E2.

Real world dataset preparation: We normalize input and output

of the real world datasets for training. The datasets are split into

90% training and 10% testing.
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