Learning Equations for Extrapolation and Control
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Abstract Results on complex formula
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function for a phenomenon is the prime goal as it allows to understand N = — extrapolation error output for F-Div DY o
and generalize results. This paper proposes a novel type of function . ) . . - —— MLP
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It is implemented as an end-to-end differentiable feed-forward net- Learning/Regularization stages SVR 0.26 T System o bstancig
work and allows for efficient gradient based training. Due to sparsity Training is split into phases, because: Eureqa 0.13 y
regularization concise interpretable expressions can be obtained. Ap- @ plain L, regularization leads often to premature convergence to - { [
plied to robot control, we can identify the dynamics equations after suboptima T =2y = 2 omme o)Q\.UW).
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4 bal 5 & P & P @ result is always trade-off between error and regularization term Consider data from more complicated formulas: » .
and balance. 13 (1 + ) sin(y) + Zowsws) F 3 @ modified OpenAl Gym cart-pole for swingup
Phase 1 Phase 2 Phase 3 J - ’ g @ collect data from K random rollouts
WA no regularization L, reqularization fix Ly Y = 1/2 (Sll’l(ﬂ'xl) + COS(QCEQ Sln(ﬂ'ilil)) + x2x3x4) F-4
F_3 learned equation graphs @ train EQL™ networks on K — 1 rollouts from scratch

@ use one for validation = find best equation

@ use model predictive control (MPC) to perform cart-pendulum
swingup

At a glance
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@ to extrapolate to new situations, hase 1: no regularzation (A = 0) T —ay—as =7 z4=—023

@ to dissect outcomes into causal pathways, hase 2: L, regularzation (A > 0)

@ to be efficient on evaluation ' _ ! _ & o F-4 random expression reward vs. number of rollouts K MPC on EQL™ model (with K=2)
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There are also cases when we cannot find the right formula, see [4] Conclusion
§ : Occams razor: the simplest formula is most likely the right one.
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Network architecture of the proposed Equation Learner with divisions (EQL™) mance depending on validation error and . o

for 3 layers (L = 3) and one neuron per type. sparsity s. Circle arcs indicate the Ly  0-02¢
norm iso-lines (normalized). 0.00 .

@ Equation Learner (EQL™) learns analytical expressions from data
with divisions

Cart-pendulum dynamics

@ symbolic regression as continuous optimization problem

Learn dynamics equation from synthetic data @ special model selection procedure following Occams razor

@ works for a wide range of examples

Forward dynamics contains divisions: (y3 = 6)

Each layer has: @ suitable for dynamics learning and control:

cartpole swingup after 2 random rollouts

—x1 — 0.01z3 + z7sin (z2) + 0.1x4 cos (z2) + 9.81 sin (x3) cos (x2)
sin® (o) + 1

@ a linear all-to-all mapping to an intermediate representation z Ys =

L L . . 2) With some points from extrapolation domain:
@ unary units implementing: identity , sine, and cosine

Use also validation error on few extrapolation points (here 40). Equations of motion randomly sampled from subdomain (|—1, 1})
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The final layer computes the regression values as division. . rtor
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lowest validation in inter- .t 0.08
polation and extrapolation

@ binary units: multiplication of two inputs
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Code: https://github.com/martius-1lab/EQL
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Great extrapolation, but needs to be realizable!




