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Abstract

In classical machine learning, regression is treated as a black box pro-
cess of identifying a suitable function from a hypothesis set without
attempting to gain insight into the mechanism connecting inputs and
outputs. In the natural sciences, however, finding an interpretable
function for a phenomenon is the prime goal as it allows to understand
and generalize results. This paper proposes a novel type of function
learning network, called equation learner (EQL÷), that can learn
analytical expressions and is able to extrapolate to unseen domains.
It is implemented as an end-to-end differentiable feed-forward net-
work and allows for efficient gradient based training. Due to sparsity
regularization concise interpretable expressions can be obtained. Ap-
plied to robot control, we can identify the dynamics equations after
2 random trials good enough to control a cart-pendulum to swing up
and balance.

At a glance

What: finding the simplest descriptive formula for data

Why:

to extrapolate to new situations,

to dissect outcomes into causal pathways,

to be efficient on evaluation

Example: a robot can make predictions about movements outside
the experienced domain, e. g. for higher velocities.

How: differentiable network with analytic base functions, sparsity
regularization and special model selection.

Network for function extrapolation

Architecture

Network architecture of the proposed Equation Learner with divisions (EQL÷)
for 3 layers (L = 3) and one neuron per type.

Each layer has:

a linear all-to-all mapping to an intermediate representation z

unary units implementing: identity , sine, and cosine

binary units: multiplication of two inputs

The final layer computes the regression values as division.
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Training

Objective

We use a Lasso-like objective (L2 loss and L1 regularization):
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with network ψ(x) and apply a stochastic gradient descent (Adam [1])
with mini-batches.

Learning/Regularization stages

Training is split into phases, because:

plain L1 regularization leads often to premature convergence to
suboptima

result is always trade-off between error and regularization term

Phase 1: no regularzation (λ = 0)

Phase 2: L1 regularzation (λ > 0)

Phase 3: limit L0 norm: {w = 0 | |w| < 0.001, w ∈ W 1...L}
Division is regularized: one-sided and cut-off threshold θ = 1/

√
t

hθ(a, b) :=

{

a
b if b > θ

0 otherwise

Model selection

How to find the “right” formula?

1) Without any data from extrapolation domain:

Occams razor: the simplest formula is most likely the right one.

=⇒ Pick the instance with
lowest complexity (# units)
and lowest validation error
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2) With some points from extrapolation domain:

Use also validation error on few extrapolation points (here 40).

=⇒ Pick instance with
lowest validation in inter-
polation and extrapolation

as above but using validation error in both
domains. Circle arcs indicate the L2 norm
iso-lines (normalized).
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Results on complex formula

Formula containing a division:

y =
sin(πx1)

(x22 + 1)
F-Div

extrapolation error
EQL÷ 0.01
EQL 0.20
MLP 0.83
SVR 0.26
Eureqa 0.13

output for F-Div

Consider data from more complicated formulas:

y = 1/3 ((1 + x2) sin(πx1) + x2x3x4) F-3

y = 1/2 (sin(πx1) + cos(2x2 sin(πx1)) + x2x3x4) F-4

F-3 learned equation graphs
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F-4 random expression

training domain 1/16th of extrapolation domain!

extrapolation EQL÷ EQL MLP SVR Eureqa
F-3 0.01 0.35 0.47 0.34 0.01
F-4 0.23 0.37 0.86 0.91 0.85
Random Exp 0.03 — 1.89 17.67 —

There are also cases when we cannot find the right formula, see [4]

Cart-pendulum dynamics

Learn dynamics equation from synthetic data

Forward dynamics contains divisions: (y3 = θ̇)

y3 =
−x1 − 0.01x3 + x2

4
sin (x2) + 0.1x4 cos (x2) + 9.81 sin (x2) cos (x2)

sin2 (x2) + 1

Equations of motion randomly sampled from subdomain ([−1, 1])

interp. extrapol.

EQL÷ 0.010 0.06
EQL 0.0103 0.17
MLP 0.012 0.18
SVR 0.019 0.36
Eureqa 0.012 0.19

Great extrapolation, but needs to be realizable!

Learning to control cart-pendulum

modified OpenAI Gym cart-pole for swingup

collect data from K random rollouts

train EQL÷ networks on K − 1 rollouts from scratch

use one for validation =⇒ find best equation

use model predictive control (MPC) to perform cart-pendulum
swingup

Utility function for MPC: (pole up and cart in the center)

R = − cos(θ) + 0.1x2 + 0.1ẋ2 + 0.02θ̇2

reward vs. number of rollouts K MPC on EQL÷ model (with K=2)
with training data
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Successful swingup after 2 random trails!

Video: https://youtu.be/MG9q3gTtBLs

Conclusion

Equation Learner (EQL÷) learns analytical expressions from data
with divisions

symbolic regression as continuous optimization problem

special model selection procedure following Occams razor

works for a wide range of examples

suitable for dynamics learning and control:
cartpole swingup after 2 random rollouts

Code: https://github.com/martius-lab/EQL
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