Header logo is al

ics Thumb sm dominik baumann
Dominik Baumann (Project leader)
Ph.D. Student
ics Thumb sm 2018 ac r7b9314 cut
Sebastian Trimpe (Project leader)
Max Planck Research Group Leader
am Thumb sm img 3118
Noemployeeimage sm
Marco Zimmerling
TU Dresden
no image
Fabian Mager
TU Dresden
8 results

2019


Thumb xl testbed v5
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

(Best Paper Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)

Abstract
Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals below 100 ms. Low-power wireless is preferred for its flexibility, low cost, and small form factor, especially if the devices support multi-hop communication. Thus far, however, closed-loop control over multi-hop low-power wireless has only been demonstrated for update intervals on the order of multiple seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance such as jitter or packet loss, and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for linear dynamic systems. Using experiments on a testbed with multiple cart-pole systems, we are the first to demonstrate the feasibility and to assess the performance of closed-loop control and coordination over multi-hop low-power wireless for update intervals from 20 ms to 50 ms.

arXiv PDF DOI Project Page [BibTex]

2019

arXiv PDF DOI Project Page [BibTex]

2018


Thumb xl learn etc
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

arXiv PDF DOI Project Page Project Page [BibTex]

2018

arXiv PDF DOI Project Page Project Page [BibTex]


Thumb xl testbed2
Evaluating Low-Power Wireless Cyber-Physical Systems

Baumann, D., Mager, F., Singh, H., Zimmerling, M., Trimpe, S.

In Proceedings of the IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages: 13-18, IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), April 2018 (inproceedings)

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl unbenannte pr%c3%a4sentation
Event-triggered Learning for Resource-efficient Networked Control

Solowjow, F., Baumann, D., Garcke, J., Trimpe, S.

In Proceedings of the American Control Conference (ACC), pages: 6506 - 6512, American Control Conference, June 2018 (inproceedings)

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]

2017


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

arXiv Supplementary material PDF DOI Project Page [BibTex]

2017

2016


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

arXiv PDF DOI Project Page [BibTex]

2016

arXiv PDF DOI Project Page [BibTex]